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Abstract

The hyperbolic heat conduction equation (HHCE), which acknowledges the finite speed of heat propagation, is

based on microscopic evidence from the kinetic theory and statistical mechanics. However, it was argued that the

HHCE could violate the second law of thermodynamics. This paper shows that a HHCE-like equation (RHCE) can

be derived directly from the theory of relativity, as a direct consequence of space–time duality, without any consider-

ation of the microstructure of the heat-conducting medium. This approach results in an alternative expression for the

heat flux vector that is more compatible with the second law. Therefore, the RHCE brings the classical field theory of

heat conduction into agreement with other branches of modern physics.

� 2005 Published by Elsevier Ltd.
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I think that theory cannot be fabricated out of the

results of observation, but that it can only be

invented.

Albert Einstein [1]
1. Introduction

The theory of relativity is often overlooked within the

context of classical engineering sciences based on the fol-

lowing argument: Relativity is concerned with objects

moving at speeds comparable with the speed of light,

while most mechanical systems involve objects moving

at speeds negligible compared with the speed of light;

therefore, relativistic effects can be ignored. While the
0017-9310/$ - see front matter � 2005 Published by Elsevier Ltd.

doi:10.1016/j.ijheatmasstransfer.2005.02.003

* Corresponding author. Fax: +61 2 9351 7060.

E-mail address: yali@aeromech.usyd.edu.au (Y.M. Ali).
above argument is true, it is a very strong and restrictive

interpretation of the relativity theory. A weaker inter-

pretation can be proposed: Relativity is concerned with

objects that move or propagate at speeds comparable

with a limiting speed characteristic of the field or med-

ium involved.

For example, electromagnetic objects propagate at

speeds comparable with the maximum speed of propa-

gation of an electromagnetic signal (photon), i.e. the

speed of light in vacuum. Similarly, cosmological objects

move at significant speeds, when compared with the

maximum speed of propagation of a gravitational signal

(graviton). However, there are physical fields that are

less fundamental in nature, for which the limiting speeds

of propagation are (numerically) small compared with

the speed of light. Yet, they still impose restrictions on

the propagation of objects moving across them. For

example, the potential field of a pressure wave propagat-

ing through a fluid is restricted by the speed of sound in

that fluid, especially near a unit Mach number.
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Nomenclature

A [ ] relativistic operator

c specific heat

C speed of heat (second sound)

d total derivative

D substantial derivative

dx, dy, dz spatial distances

ds space-like-time distance

f, h arbitrary functions

H heat flow vector

i imaginary transformation

i, j, k spatial unit vectors

k thermal conductivity

o time unit vector

q heat flux vector

s specific entropy

t real time

u specific energy

U source velocity vector

x, y, z spatial dimensions

Greek symbols

a thermal diffusivity

b arbitrary parameter

o partial derivative

h temperature

q density

r entropy production

s space-like-time

s0 relaxation time

Other symbols

$ gradient operator

$2 Laplacian operator

h quad operator

h2 d�Alembertian operator

Æ vector dot product

\ intersection operator

! implication operator
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A similar effect equally applies to heat conduction,

which can be viewed as propagation of hypothetical par-

ticles (phonons) in a hypothetical gas (historically know

as �Caloric�). The limiting speed on heat propagation

(the speed of second sound) has been measured in vari-

ous media [2–4]. A thermal Mach number has also been

reported for heat conduction through solids [5,6]. Fur-

thermore, thermal resonance has been suggested in cases

of high frequency periodic thermal loading [7,8].

The Fourier equation of heat conduction is funda-

mentally wrong because it assumes an infinite speed of

propagation of heat, which is physically inadmissible.

This anomaly has been (supposedly) overcome by the

hyperbolic heat conduction equation (HHCE), which in-

cludes a component (presumably) recognising the finite

speed of heat signals. The HHCE was developed based

on microscopic considerations [2,9,10] that are cumber-

some, and seem to violate at least on statement of the

second law of thermodynamics [11].

This paper will show that the HHCE can be consis-

tently developed based on a weak interpretation of the

theory of relativity, as originally proposed in [12], with-

out any microscopic or material-specific considerations.

The following sections will argue that: (1) the HHCE

does not really comply with the relativity theory, and

(2) that it can violate the second law of thermodynamics.

The alternative model aims at overcoming both difficul-

ties, and hopes to help in resolving the existing contro-

versies about the heat equation. The new model of

heat conduction will bring it into better agreement with

other branches of modern physics.
2. The hyperbolic heat conduction equation

For any rigid stationary material without internal

heat generation, energy balance within a control mass

can be expressed as [13]:

qc
oh
ot

þr � q ¼ 0; ð1Þ

where q is density, c is specific heat (at a given tempera-

ture h), q is the thermal heat flux vector, and $ is the gra-

dient operator:

r ¼ o

ox
iþ o

oy
jþ o

oz
k: ð2Þ

If the material is isotropic, homogeneous, and the

variation in temperature is so small that material prop-

erties can be assumed constant, then substituting Fou-

rier�s linear approximation of heat flux,

q ¼ �krh; ð3Þ

into Eq. (1) leads to the well-known Fourier equation of

heat conduction:

oh
ot

¼ ar2h; ð4Þ

where k is thermal conductivity, a = k/(qc) is thermal

diffusivity, and $2 is the Laplacian operator:

r2 ¼ o2

ox2
þ o2

oy2
þ o2

oz2
: ð5Þ
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Several investigators have argued that Eq. (4) is fun-

damentally wrong because it assumes an infinite speed of

propagation of heat signals [14]. This means that a ther-

mal disturbance can be detected instantaneously at an

infinitely far distance from the source, which is physi-

cally unacceptable. One of the implications of the theory

of relativity is the principle of ‘‘no action at a distance’’

which requires a finite speed of propagation of any sig-

nal, and necessitates a time lag between a cause and its

effect [15]. Morse and Feshbach [16] recognised this

problem, and proposed that Eq. (4) should be modified

into a more acceptable (Telegraph) form:

1

C2

o2h
ot2

þ 1

a
oh
ot

¼ r2h: ð6Þ

This form is known as Maxwell�s equation, because it

resembles the equation of propagation of an electromag-

netic field, i.e. light. However, in Eq. (6) the speed of

heat propagation, C, is not a fundamental property of

the field, but is related to the mean free path of gas mol-

ecules. The idea is extended to solids, by assuming that

heat is conducted by gas-like phonon or electron

streams.

Tisza (1938) and Landau (1941) predicted that the

speed of heat can be different from the speed of sound

and called it the speed of second sound [17]. Peshkov

[3] found experimentally that in liquid Helium II, it is

one order of magnitude less than the speed of sound.

There are evidences to suggest the same ratio or more

for non-homogeneous solids [4,18].

Eq. (6) is often attributed to Cattaneo [19], Vernotte

[20], as well as Chester [2] who considered the case of

second sound in solids. Based on the kinetic theory cal-

culations and Boltzmann equations for a rarefied gas

[21], they proposed that Fourier�s linear heat flux, Eq.

(3), should be modified to the form:

s0
oq

ot
þ q ¼ �krh; ð7Þ

where s0 is the relaxation time of the heat conducting

medium, i.e. free electrons in the case of metals. If we

take the gradient of Eq. (7) and add it to Eq. (7) and

the time derivative of Eq. (1) and add it to Eq. (1) and

eliminate q and its derivatives, we get Eq. (6), if we let

C2 = a/s0.
Here, it is important to note that Eqs. (6) and (7) are

physically justified based on microscopic aspects of lat-

tice vibration, electrons transport, and their interactions.

The relaxation time, s0, has its origin from statistical

mechanics of the electrons distribution. Consequently,

the speed of second sound, C, is merely a collection of

various coefficients in the equation, but has no funda-

mental physical significance similar to that associated

with the speed of light.

In other words, while Eq. (6) looks like satisfying the

theory of relativity (because it has the form of Maxwell�s
equation), it is not conceptually relativistic. The laws of

motion employed in the derivation of the HHCE are

essentially Newtonian. The expression in Eq. (7), the

misleading symbol C, and even Eq. (6), are only first or-

der approximations of some very complex and cumber-

some statistical computations. These computations do

not consider the theory of relativity at all, and are classic

in nature. A relativistic treatment of the problem was at-

tempted by some authors [22–25], by including a relativ-

istic correction due to the speed of the heat-carrying

particles, e.g. electrons. Yet, this is followed by classical

statistical treatments that are mathematically complex,

and lead to Eqs. (6) and (7) as first order approxima-

tions. A review of various approaches to deriving Eqs.

(6) and (7) can be found in [26].
3. Controversies about the HHCE

This artificiality in the relationship between the

HHCE and the relativity theory is not the only serious

objection facing that equation. Several investigators,

e.g. [27], argued that Eq. (6) is not necessary because,

for most practical situations, C2 is very large compared

with a such that the second-order term is negligible, and

Eq. (6) will converge quantitatively to Eq. (4). This argu-

ment can be challenged on two grounds. Firstly, there

are experimental evidences that C is not always very

large. A relaxation time up to 10 s has been measured

in non-homogeneous materials [18]. Polymeric and vitre-

ous materials are important engineering materials that

are almost thermal insulators. While experimental data

may not be available yet, there is no reason to believe

that C, for these materials, should as high as for metallic

conductors. Other qualitative evidences, Appendix A,

also suggest that under conditions prevailing in many

manufacturing processes, C can be very small.

Secondly, even if C were very large, this still would

not justify dropping the second order term in Eq. (6).

For example, there can be transient conditions in which

the second order time derivative is much larger than the

first order time derivative. Thus, while the relative ratio

of C2 to a is important, what is more important is the

period of the thermal load compared with the relaxation

time. For example, laser heating uses pulse frequency in

the GHz range. This is a time scale comparable with the

relaxation time, and Eq. (6) should be used instead of

Eq. (4).

Aside from the quantitative, experimental, and prac-

tical issues, Eq. (6) has other important physical implica-

tions. Eq. (4) is a parabolic partial differential equation,

i.e., a diffusion equation that includes a dissipative com-

ponent, is always stable, and will always converge to

steady state conditions after sufficient time [16]. On the

other hand, Eq. (6) is a hyperbolic diffusion wave equa-

tion that contains a conservative term, which can result
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in the production and propagation of thermal waves.

Depending on boundary conditions, these waves may

be overdamped or underdamped [7,10]. Consequently,

there will be cases where initial and boundary conditions

may lead to thermal resonance [7,8], or temperature may

overshoot to values higher than at the source. Moreover,

there can be significant phase differences among various

parts of the medium, if subjected to high thermal fre-

quency [28]. Clearly, all these aspects are of practical

importance, and the HHCE should be considered when-

ever fast moving heat sources are involved.

Finally, as noted by many authors [11,29,30], it is

possible to design boundary conditions such that heat

would appear to be moving from a cold to a hot point,

in violation of the second law of thermodynamics. The

following section will show that this paradoxical situa-

tion can occur not because of Eq. (6) but due to Eq.

(7), which has not been verified.
4. Relativistic heat conduction equation

In classical physics, real world is made of a three-

dimensional Euclidean space (x,y,z in Cartesian coordi-

nates) and a one-dimensional time (t). Physical laws are

required to be invariant with respect to any Galilean

transformation. In other words, physical quantities re-

main the same for all inertial frames of reference within

a Euclidean space. For example, the distance, ds, be-

tween any two points, as defined by

ds2 ¼ dx2 þ dy2 þ dz2 ð8Þ

remains invariant regardless of any rotation or transla-

tion of the coordinate system.

In relativistic physics, a Minkowski world [15] is

made of a four-dimensional pseudo-Euclidean space–

time (s,x,y,z), where s is called ‘‘Space-like-time’’: it

has a length dimension. In other words, space and time

are coupled, and time is no longer invariant and inde-

pendent of space. This is a direct consequence of the

realization that there is a finite speed of propagation

of information, and therefore time does not have the

same meaning at all points in space. In the context of

heat transfer, this has the following implication. Some-

one located at point (x,y,z) can solve a Fourier equation

and obtain results different from those obtained by

someone else at (x 0,y 0,z 0), and yet both solution can be

correct. This is because the first solves the problem

according to the information available at time t in its

frame of reference, while the other solves the problem

at time t 0 in its own frame of reference. In a Minkowski

world, t and t 0 are not identical, because of the finite

speed of propagation of information from and to each

of the respective points.

In a Minkowski world, laws of physics must be

invariant with respect to a Lorentz transformation. In
other words, the interval, ds, between any two events,

as defined by

ds2 ¼ dx2 þ dy2 þ dz2 � C2dt2 ð9Þ

remains invariant in all inertial frames of reference.

Comparison between Eqs. (8) and (9) shows that any

classical physical quantity can be upgraded into its rela-

tivistic counterpart by performing an imaginary rotation

from real time to space-like-time [16], i.e.

s ¼ iCt; ð10Þ

where s has a length dimension, t has a time dimension,

and therefore C has a velocity dimension. Multiplication

by the imaginary constant, i ¼
ffiffiffiffiffiffiffi
�1

p
, ensures that s re-

mains orthogonal to the other three spatial dimensions.

Eq. (10) provides a simple mechanism for transform-

ing any classical physical quantity into its relativistic

counterpart. For example, the four-dimensional gradi-

ent (also called the quad, h) is defined as [16]:

� ¼ o

os
oþ o

ox
iþ o

oy
jþ o

oz
k

¼ o

os
oþr

¼ �i

C
o

ot
oþr: ð11Þ

Similarly, the four-dimensional Laplacian (also called

the d�Alembertian, h2) is

�
2 ¼ o2

os2
þ o2

ox2
þ o2

oy2
þ o2

oz2

¼ o2

os2
þr2

¼ �1

C2

o2

ot2
þr2: ð12Þ

The operators in Eqs. (11) and (12) can then be used to

upgrade Fourier equation into its relativistic form. How-

ever, it is important to note that in the above develop-

ment and in Eq. (10), there were no pre-assumptions

or restrictions on the numeric value of C. In this weak

interpretation of the relativity theory, we would like to

maintain this ambiguity. Indeed, we would suggest that

C is the speed of propagation of information about tem-

perature in the conducting medium. Whether this infor-

mation is carried by electrons, phonons, or any other

mechanism is irrelevant to the current development.

With reference to Fourier equation, Eq. (4), and the

definition of a d�Alembertian, Eq. (12), the relativistic

Fourier equation in a four-dimensional space–time is

oh
ot

¼ a�2h ¼ a
o2h
os2

þr2h

� �
¼ �a

C2

o2h
ot2

þ ar2h; ð13Þ

which is identical in form to the hyperbolic heat equation,

Eq. (6). However, it is important to note that the physical

interpretation and conceptual origin of the parameter C
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are very different between the two equations. In Eq. (6),

C is just a collection of terms that result from an approx-

imation of the statistical mechanics of diffusion of a gas.

In Eq. (13), by virtue of Eq. (10), C is a fundamental

property of space–time as seen by the thermal field. In

other words, while Eq. (6) is a statistical constitutive

equation, Eq. (13) is a field equation describing the prop-

agation of heat, even in vacuum. Moreover, in deriving

Eq. (13), we need not know anything about the micro-

structure of the heat-conducting medium.

In order to appreciate why the HHCE, Eq. (6), can

violate the second law of thermodynamics while Eq.

(13), which is apparently identical, does not, we need

to complete the development of the relativistic model.

The energy balance, Eq. (1), when upgraded to the rela-

tivistic form, becomes:

qc
oh
ot

þ� � q ¼ qc
oh
ot

þ�i

C
oq

ot
� oþr � q ¼ 0; ð14Þ

while the definition of the heat flux vector, q in Eq. (3),

in relativistic form, is

q ¼ �k�h ¼ ik
C

oh
ot

o� krh: ð15Þ

It can be seen that substituting Eq. (15) into Eq. (14)

yields Eq. (13), and that the energy balance equation is

preserved in both worlds. The imaginary component in

Eq. (15) is a straightforward manifestation of the wave

nature of heat conduction that is implied in Eq. (13).

Therefore, the relativistic heat conduction model in

four-dimensions,1

qc
oh
ot

þ� � q ¼ 0 \ q ¼ �k�h ! oh
ot

¼ a�2h; ð16Þ

is consistent, and has identical form to the classical

(three-dimensional) Fourier model,

qc
oh
ot

þr � q ¼ 0 \ q ¼ �krh ! oh
ot

¼ ar2h: ð17Þ

Consequently, one would argue that if the system of Eq.

(17) does not violate the laws of thermodynamics, then

the system of Eq. (16) should not violate them as well.

The reason why the Maxwell–Chester–Cattaneo–

Vernotte model of heat conduction (the set of Eqs. (1),

(7), and (6)) violates the laws of thermodynamics now

becomes clearer. This model has the structure:

qc
oh
ot

þr � q ¼ 0 \ s0
oq

ot
þ q ¼ �krh ! oh

ot
¼ a�2h:

ð18Þ

It can be seen that the temperature equation, Eq. (6),

is the HHCE, which is identical to the relativistic form in

Eq. (13). The energy equation, Eq. (1), is the same as
1 In Eqs. (16)–(18), ‘‘\’’ means ‘‘and,’’ while ‘‘!’’ means

‘‘therefore’’.
that for the classical (three-dimensional) Fourier model,

Eq. (17). The heat flux equation, Eq. (7), however, is a

confused formulation that belongs to neither world.

The model in Eq. (18) is neither classical nor relativistic,

but something in between, mainly due to the structure of

Eq. (7). It is interesting to note that Eckert and Drake

have cautioned against the use of Eq. (7), ‘‘as it has

not been established neither experimentally or theoreti-

cally’’ [14]. A careful inspection of Eq. (7) would suggest

that the time derivative is a form of heat leakage along

the time direction in Eq. (3). As this leakage is unac-

counted for, there may be situations in which Eq. (18)

can violate the laws of thermodynamics.

To appreciate further the difference between the sys-

tems of Eq. (16) and Eq. (18), and why Eq. (7) is invalid

while Eq. (15) is fine, take the time derivative of Eq. (15):

oq

ot
¼ ik

C
o2h
ot2

o� kr oh
ot

� �
: ð19Þ

Then, we can write

s0
oq

ot
þ q ¼ ik

C
s0
o2h
ot2

þ oh
ot

� �
o

� k s0r
oh
ot

� �
þrh

� �
; ð20Þ

which is significantly different from Eq. (7). Even if we

consider only the real part,

Re s0
oq

ot
þ q

� �
¼ �kr s0

oh
ot

þ h

� �
; ð21Þ

it has a component of temperature time derivative that is

missing in Eq. (7). In a four-dimensional Minkowski

world, Eq. (20) can be written as:

s0
oq

ot
þ q

� �
¼ �k� s0

oh
ot

þ h

� �
: ð22Þ

Hence, it is clear that Eqs. (20)–(22) are symmetric,

while Eq. (7) is not.

Symmetry of the form of physical laws is often taken

as an evidence of the validity of these laws.
5. Thermodynamic considerations

The classical local entropy balance over a control

mass is [11]:

r � q

h

� �
þ q

os
ot

¼ r; ð23Þ

where s is specific entropy and r is entropy production

rate. Combining Eq. (23) with Eq. (1) and the Gibbs

equation,

cdh ¼ du ¼ hds; ð24Þ
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leads to

r ¼ �1

h2
q � rh: ð25Þ

One statement of the second law of thermodynamics is

the Clausius inequality, which requires that r should re-

main non-negative for a closed system, changing irrevers-

ibly between two equilibrium states. Firstly, Eq. (6) is a

non-equilibrium equation, and there is no universally

acceptable non-equilibrium thermodynamics theory

[11,31]. Indeed, the concepts of temperature and entropy

are not clearly defined under non-equilibrium conditions.

Secondly, while Eq. (25) applies for a system, we adopt a

more strict statement and require that Eq. (25) applies at

each point in space and time. Therefore, violating Eq.

(25) does not necessarily mean violating a non-equilib-

rium second law, but an equation satisfying Eq. (25) is

likely to satisfy a more general non-equilibrium second

law, if such a law can be established.

Substituting Fourier�s definition of heat flux, Eq. (3),

into Eq. (25) yields:

r ¼ k

h2

oh
ox

� �2

þ oh
oy

� �2

þ oh
oz

� �2
" #

; ð26Þ

which is always non-negative. Therefore, Fourier equa-

tion, Eq. (4), and the definition of heat flux, Eq. (3),

are always in agreement with the first, Eq. (1), and sec-

ond, Eq. (23), laws of thermodynamics, because Eq. (26)

is always non-negative.

On the other hand, the Cattaneo-Vernotte definition

of heat flux, Eq. (7), when substituted into Eq. (25),

leads to [11]:

r ¼ 1

kh2
q � qþ s0q �

oq

ot

� �
; ð27Þ

which cannot be reduced to a relation in h alone, such as

in Eq. (26), due to the anomalous presence of the time

derivative of q. Clearly, there is no guarantee that Eq.

(27) is always non-negative; there may be conditions in

which Eq. (27), and consequently Eq. (7), can violate

the second law of thermodynamics [11]. For example,

with very large relaxation time and very large negative

rate of change of the heat flux vector, the second term

in Eq. (27) can become negative and larger than the first

term; thus, implying negative entropy production.

Finally, when the relativistic heat flux, Eq. (15), is

combined with the relativistic energy balance in Eq.

(14), the Gibbs relation in Eq. (24), and the relativistic

entropy balance,

� � q

h

� �
þ q

os
ot

¼ r; ð28Þ

it yields:

r ¼ �1

h2
q ��h: ð29Þ
Eq. (29), due to the good nature of Eq. (15), can be ex-

panded as

r ¼ k

h2

oh
ox

� �2

þ oh
oy

� �2

þ oh
oz

� �2

þ oh
os

� �2
" #

; ð30Þ

which is always non-negative in a Minkowski world, and

even in real world. To see that this is indeed the case, we

note that oh
ox ¼ oh

ot
dt
dx, etc., and rewrite Eq. (30) with

respect to real time as

r ¼ k
1

h
oh
ot

� �2
dt
dx

� �2

þ dt
dy

� �2

þ dt
dz

� �2

� 1

C

� �2
" #

;

ð31Þ

which is assured to be non-negative if

dt
dx

� �2

þ dt
dy

� �2

þ dt
dz

� �2

P
1

C2
: ð32Þ

This inequality is a statement of the second law of ther-

modynamics that includes neither entropy nor tempera-

ture. Indeed, Eq. (32) is a statement of a fundamental

property of space–time, regardless of the field under

consideration.

The inequality in Eq. (32) is always valid because it is

a direct consequence of the definition of a Minkowski

world, Eq. (9). To appreciate this point, consider, for

simplicity, a two-dimensional space–time (s,x). For

any two time-like unique events, ds2 < 0, Eq. (9) leads

to the conclusion that Cdt > dx. This can only occur if

the magnitude of the speed of propagation is less than

the magnitude of the limiting speed, C. This is also

one of the pillars of the relativity theory, i.e. only

time-like events are physically admissible. For example,

the speed of any propagation cannot exceed the speed of

light in vacuum, by definition of a Minkowski world,

Eq. (9). Therefore, if the speed of propagation is less

than C, the reciprocal of that speed has to be greater

than 1/C, which is the condition in Eq. (32).

In other words, for the HHCE to satisfy the second

law of thermodynamics, it suffices to have a definition

of the heat flux vector that is invariant with respect to

a Lorentz transformation. The heat flux model in Eq.

(15) is invariant with respect to such a transformation,

while Eq. (7) is not. Invariance with respect to a Lorentz

transformation seems to result in an automatic satisfac-

tion of the second law of thermodynamics. In a sense,

the second law becomes nothing but a complementary

definition of a Minkowski world, in which no propaga-

tion is allowed to exceed the limiting speed, C. There-

fore, the conceptual superiority of Eq. (15) over Eq.

(7) is asserted.

In conclusion, the technical importance of the HHCE

is preserved, while its apparent anomalies have been re-

moved. The proper model to use is therefore the one in

Eq. (16), which has been achieved as a direct implication
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of Eq. (10). The HHCE, Eq. (6), is physically sound, but

the heat flux definition in Eq. (7) is not. A heat flux def-

inition according to Eq. (15) seems to be more consistent

with the second law and the theory of relativity. To

avoid confusion between Eqs. (13) and (6), the earlier

will be called the Relativistic Heat Conduction Equation

(RHCE). They both have the same form, but have sig-

nificantly different underlying assumptions and physical

backgrounds. In particular, they have different defini-

tions of the heat flux vector, as can be seen by compar-

ing Eqs. (16) and (18).
6. Alternative formulations

When substituting Eq. (3) into Eq. (1), it is common

to eliminate q to yield the Fourier equation, Eq. (4),

which is written in terms of h alone. It is also possible

to eliminate h and write the classical heat conduction

equation in terms of q alone, i.e.

oq

ot
¼ ar2q: ð33Þ

Likewise, if we take the quad of Eq. (14),

qc�
oh
ot

� �
þ�

2 � q ¼ 0; ð34Þ

and the time derivative of Eq. (15),

oq

ot
¼ �k�

oh
ot

� �
; ð35Þ

then the relativistic heat conduction equation can be

written as

oq

ot
¼ a�2q: ð36Þ

This formulation is more suitable for problems with heat

flux boundary conditions.

It is also possible to define a heat-flow vector field, H,

such that:

oH

ot
¼ q; ð37Þ

and therefore,

qch ¼ �� � H: ð38Þ

This formulation can be useful in that it eliminates the

time derivative of temperature, and can be mathemati-

cally easier to solve. It also allows for a range of integral,

Lagrangian, and variational formulations, which can be

more useful for numerical solutions. The transition from

Eq. (38) to any of these formulations follows the same

steps as the classical procedures described in [14], and

need not be repeated here.

Moreover, we can define the relativistic operator,

A[ ], as:
A½f  ¼ s0
of
ot

þ f : ð39Þ

Then, the relativistic heat flux vector, in Eq. (15), (20), or

(22), can be written in a symmetric form as

1

k
A½q ¼ A½�h ¼ �A½h ¼ i

C
A

oh
ot

� �
� A½rh: ð40Þ

Consequently, the relativistic heat conduction equation

can be written as

oA½h
ot

¼ ar2h; ð41Þ

which has identical form to the classical Fourier equa-

tion, if h is replaced with A[h] in the time derivative.

Finally, the relativistic heat conduction model, Eq.

(16), can be formulated in cylindrical, spherical, or any

other coordinate system, by virtue of Eq. (11) and Eq.

(12), without any conceptual difficulties. Anisotropic

material behaviour can be treated as in the classical case

(e.g. [14]), as long as C remains constant. When C is con-

stant, time is isotropic, and only spatial anisotropy

needs to be considered. Treatment of temperature

dependent material properties, e.g., variable thermal

conductivity, can be done by substitution of variables

(e.g. [13]) and represents no fundamental difficulties.
7. Restriction

In the above formulations of Section 6, it was implic-

itly assumed that space and time differentiations are

interchangeable, i.e.

o

ot
r ¼ r o

ot
; ð42Þ

and

o

ot
� ¼ �

o

ot
: ð43Þ

In classical heat conduction, Eq. (42) is probably accept-

able, because it is assumed that space and time are inde-

pendent and separable. This is not the case with

relativity, where space and time are coupled, and there

may be circumstances at which Eq. (43) may not hold.

This is because real-time and space-like-time are linked,

due to Eq. (10). In this weak interpretation of relativity,

C is no longer a universal constant; it is a material prop-

erty that varies with temperature, the presence of stress–

strain fields, as well as electro-magnetic fields. This means

that C can have sharp local variations depending on

external loading as well as the heat conduction field itself.

This may result in distortion and wrinkles in space–time

itself, and Eq. (43) may not be that straightforward.

Thus, care has to be taken when using any of the formu-

lations in Section 6. It is always better to use the original

model, Eq. (16), that does not require Eq. (43).
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In summary, as long as C is well behaved, in the sense

of being practically constant, the relativistic heat con-

duction model presented here can utilize all of the re-

sources and techniques available to classical heat

conduction based on Fourier equation. On the other

hand, if C is ill behaved, there may be unforseen conse-

quences that are beyond the scope of this work.
8. Relativistic moving heat source

There are increasing number of practical applications

and manufacturing processes in which the RHCE seems

important. Many of these cases involve a heat source

moving relative to the surface of the work-material being

processed; e.g. continuous annealing, laser cutting, weld-

ing, high-speed machining, and high-speed grinding. As

demand for higher production rates increase, speeds of

moving heat sources also increase. In cases like pulsed la-

ser applications and high-speed grinding, the heat

sources can have very high frequencies, as well. Thus,

temporal speed becomes as important as spatial speed,

and the relativistic heat model needs to be considered.

In this section, we will develop the equation of a rel-

ativistic moving heat source from basic principles. Con-

sider a four-dimensional pseudo-Euclidean (Minkowski)

world defined by the Cartesian coordinates (s,x,y,z).
Consider a four-dimensional hyper-cube located at the

origin with dimensions 2ds, 2dx, 2dy, 2dz. The rate of

heat flow across the face (x � dx) perpendicular to the

x-axis is

8 qx �
oqx
ox

dx
� �

dsdy dz; ð44Þ

while heat flow across the (x + dx) face is

8 qx þ
oqx
ox

dx
� �

dsdy dz: ð45Þ

Therefore, the net heat flow along the x-axis is

16
oqx
ox

dsdxdy dz: ð46Þ

A similar expression can be obtained for each of the

other three axes. Meanwhile, heat accumulated inside

the hyper-cube, in the absence of internal heat genera-

tion, is

16qc
oh
ot

dsdxdy dz: ð47Þ

Consequently, the equation for energy balance is

qc
oh
ot

þ oqs

os
þ oqx

ox
þ
oqy
oy

þ oqz
oz

� �
¼ 0: ð48Þ

In case of a control volume that is moving with

speeds U = (0,Ux,Uy,Uz) relative to the stationary frame

of reference, there are convective heat components

(0,Uxqch,Uyqch,Uzqch). The expression for relativistic

heat flux, Eq. (15), becomes:
q ¼ �k�h þ qchU: ð49Þ

When Eq. (49) is substituted into Eq. (48), and assuming

a homogeneous isotropic material with constant mate-

rial properties, we get

Dh
Dt

¼ a�2h; ð50Þ

where D is the substantial derivative:

Dh
Dt

¼ oh
ot

þ 0
oh
os

þ Ux
oh
ox

þ Uy
oh
oy

þ Uz
oh
oz

¼ oh
ot

þ Ux
oh
ox

þ Uy
oh
oy

þ Uz
oh
oz

: ð51Þ

It is important to note that in Eq. (51),U is the velocity of

the moving continuum relative to a stationary coordinate

system. Of course, if the coordinate system is moving rel-

ative to a stationary medium, we only need to reverse the

sign from U to �U. Moreover, it is always possible to

align the coordinate system with the velocity vector along

the x-axis, such that U = Ux, and Eq. (50) simplifies to

oh
ot

þ Ux
oh
ox

¼ a�2h: ð52Þ

Eq. (52) will be used in a related work [32] to demon-

strate the practical applications of the relativistic heat

conduction model presented here.
9. Quantum mechanics relations

As shown in [32], after some dimensional manipula-

tion of a function of temperature, h(h), Eq. (52) can be

written as:

�
2hðhÞ � b2hðhÞ ¼ 0; ð53Þ

where b is a function of velocity, Ux, alone. Eq. (53) is

similar in form to the homogeneous Klein–Gordon equa-

tion that arises in relativistic quantum mechanics of a

‘‘scalar’’ meson or an elementary particle without spin

[16]. Moreover, by a procedure similar to that used in

obtaining Eq. (36), we can also write Eq. (53) in terms

of a function of the heat flux vector h(q). That turns

out to be similar to the Proca equation for a relativistic

hypothetical elementary particle with unit spin [16]. In-

deed, the heat flux vector and temperature form a com-

plex pair that satisfies both Proca and Klein–Gordon

equations, respectively. Therefore, one may speculate

that heat is transported by an elementary particle of

some peculiar spin characteristics.

Finally, since the RHCE is, after all, a wave equation,

it should be possible to find a W-function for the heat

wave that satisfies some form of a Schrödinger equation.

All of these developments are way beyond the confines of

a continuum field theory. They are also beyond the prac-

tical interest of the present work, and will not be pursued

any further. They are presented here to demonstrate the
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importance of the new definition of the heat flux vector,

Eq. (15), in assimilating classical and quantum physics.

In short, the relativistic heat conduction model, Eq.

(16), not only satisfies classical mechanics, thermody-

namics, and relativistic mechanics, but also is more com-

patible with quantum mechanics and electrodynamics.

The advantage of this model over the model in Eq.

(18) is clearly demonstrated.
10. Conclusion

Fourier equation of heat conduction satisfies both

the first and second laws of thermodynamics but is

incompatible with the relativity theory. The hyperbolic

heat conduction equation, HHCE, is compatible (in

form but not in concept) with the theory of relativity

and the first law of thermodynamics, but may violate

at least one statement of the second law.

This paper has developed an alternative model for

heat conduction, based on a weak interpretation of the

theory of relativity. This is achieved by relaxing the defi-

nition ofC from speed of light in vacuum to some limiting

speed of themedium. The value ofC is no longer a univer-

sal constant, nor does it have to be numerically very large.

It has been shown that such an approach would lead to a

new definition of the heat flux vector, q, which would sat-

isfy the second law of thermodynamics. The resulting

RHCE is shown to satisfy all laws of physics, if it remains

invariant with respect to a Lorentz transformation, which

is achieved by the new definition of q. The relativistic heat

conduction model, Eq. (16), is consistent with all laws of

physics, and is a more accurate representation of heat

conduction in many technologically important situa-

tions, to be discussed elsewhere. Moreover, it restores

symmetry and a sense of elegance to the equations gov-

erning this important branch of physics.

The achievements claimed by this paper are:

1. Proper derivation of the heat equation from relativity

theory.

2. Reconcilementwith the second lawof thermodynamics.

3. A new definition of the heat flux vector.

4. A general field theory of heat conduction, not a sta-

tistical constitutive model.

5. New interpretation of the theory of relativity and the

space–time conversion factor, C.

6. Assimilation with quantum mechanics and electro-

dynamics.
Appendix A. On the speed of heat propagation

The present disadvantage is that there are no experi-

mental methods for the accurate determination of

Cundertypical conditions of very high stresses, strains,
and strain rates, which prevail in many manufacturing

processes. The following qualitative points are intended

to show thatCmay be very small under those conditions:

1. Macroscopically, the equation of speed of propaga-

tion of elastic (sound) and plastic waves [33,34] shows

that:

C2 ¼ 1

q
os
oe

; ð54Þ

where q is density, s and e are engineering stress and

strain, respectively. Speed of propagation is clearly

proportional to the slope of the stress–strain curve.

For most materials, this slope approaches zero as

strain and strain rate approach infinity. Therefore,

at extremely high strains and strain rates (common

in many manufacturing processes), speed of propaga-

tion of any wave, including heat, is virtually zero.

2. Microscopically, severe plastic deformation is propa-

gated by heavy lattice imperfections known as dislo-

cations. It is known that dislocations impose

significant drag on phonons and electrons and lead

to relativistic effects at very high strain rates [35].

Therefore, it is expected that the speed of heat can

be very small in the presence of severe plastic defor-

mation. The extremely high strains and strain rates

provide conditions in which the material is, micro-

scopically, highly non-homogeneous, with heat ‘‘par-

ticles’’ finding it very hard to move.

3. Experimentally, it is established that the speed of

heat (second sound) is about one order of magnitude

less than the speed of sound [3]. Therefore, if speed of

sound in metals is several km/s, the speed of heat can

be several hundred m/s, which is not very high com-

pared with speeds prevailing in processes such as

high-speed machining and grinding. Moreover, the

above values are for metals and perfect structures.

Sound and heat are propagated by mechanisms such

as lattice vibration, phonons, and electrons, which

are all decelerated by structural imperfections. For

example, measurements within inhomogeneous mate-

rials reported very large relaxation times, and conse-

quently very small speeds of heat [4,18].

4. Modern high speed machining processes involve heat

sources moving as high as 1200 m/s [33], i.e. super-

sonic. Even if speed of heat were as high as speed

of sound, the relativistic effect would still be very

important.

5. As shown in [32], the finite speed of heat is effectively

equivalent to an adiabatic boundary moving away

from the heat source, with heat trapped behind that

adiabatic front. This effect is observed experimentally

in what is know as ‘‘adiabatic shear bands.’’ Under

the conditions of high strains and strain rates inside

the shear zone, temperature rises very sharply in a

manner that can be explained only by the presence

of an adiabatic boundary around the shear zone
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[36]. In other words, inside the shear band, severe

plastic deformation drags the heat carriers to the

extent that they become unable to propagate far away

from the heat source. This is demonstrated by very

sharp temperature gradients and consequent localised

microstructural changes. The presence of adiabatic

shear bands is clear evidence that C was very small

and that the relativistic heat model should apply.

In conclusion, while experimental measurements are

difficult at present, qualitative analysis would suggest

that C might be very small under conditions of high

strain and strain rate. The value of C can be much smal-

ler in the case of non-homogeneous or thermally insulat-

ing material. In all cases, speed of heat is at least one

order of magnitude less than speed of sound, which in

itself is not very large in comparison with the heat source

velocities applied by many manufacturing processes.

Side effects, such as adiabatic shear bands, serve as sup-

porting evidences that the relativistic effect is taking

place. Thus, the RHCE should be used in any modelling

or analysis of this sort of manufacturing processes.
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